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ABSTRACT. The reasons for the stable behavior of a sphere

in.a thin jet of gas or liquid directed vertically upward

are examined on the basis of previous studies and the

author's own experiments. By conceiving of the jet as di-

verging ahead of the sphere and converging behind it, the

problem becomes one of determining the characteristics of

boundary layer flow which keep the sphere within the jet.

A sphere located in a thin jet of gas or liquid directed vertically

upward is held stably in the latter. At a certain ratio between the size of
the jet and the size of the sphere, however, the stability is destroyed and

the sphere is ejected from the jet.

It is interesting to explain the reason for the stable behavior of the
sphere in the jet to determine the force that keeps it in a state of stable
equilibrium, and to determine the value of the ratio of the half width of the

jet to the radius of the sphere at which the latter is ejected from the jet.

The question of the stability of a sphere in a thin vertical jet is
discussed in [1] in conjunction with flow around a circle, where the hypothesis
is expressed that the point of divergence and the point of convergénce of
the jet lie on the same diameter. Without a hypothesis of this kind, the
problem has no single solution within the limits of the scheme of an ideal

liquid,

Jet flow around a body of blunt shape, and particularly around a sphere,
was discussed in [2]. 1In this paper, the flow around bodies whose dimensions
exceeded those of thé nozzle was investigated at distances from the initial
cross section of the jet up to 30-40 diameters 6f the body. It was confirmed
experimentally that the flow around the sphere is continuous at distances up
to 8-10 diameters. It is suggested that thé continuous flow in this area is

caused by splitting of the jet into two narrow semifinite jets. As a result

*Numbers in the margin indicate pagination in the foreign text.
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of'the development of.pressure differentials (an atmospheric one at the
outer limit, and a negative one at the surface of the body) the jets are

-pressed against the surface of the body and flow continuously around it [3].

In the present paper, we shall be considering the nature of flow around
a sphere suspended-in a vertical, axially symmetric jet, with central flow
around the sphere. The diameters of the spheres used were 74 and 37 mm. The

nozzle dimensions varied from 6 to 74 mm.

The field of velocities behind the sphere, generally speaking, is de-
termined by four parameters: the velocity of the incident flow, thé nozzle
radius, the size of the body and the distance from the nozzle opening to the
cross section where the foremost point of the sphere is located. Due to the
affinity of the velocity profiles in the different cross sections of the free
jet [4], we can use the value Y as the characteiiéfic width of the jet, which
represents the distance from the axis to‘the'point‘at which the velocity is

equal to half the axial velocity in a given cross seqtidn,

The results of the experiments. show that the nature of the flow in the
wake behind a body in the immediate vicinity of the sphere (0.054 diameters)
depends on the ratio Y/R. The value of Y is taken in the cross section where

the foremost point of the sphere is located, and R is the radius of the sphere.

If Y/R < 1, the flow is continuous and the velocity profile has the
form shown in Figure 1 (Curve 1) for Y/R = 0.485. With increasing distance
from the body, the profile levels off and at a distance of 0.5 diameters is
similar to the velocity profile of a free jet. If Y/R >1, the profile has
the form shown in Figure la (Curve 2) for Y/R = 1.19. A zone of reverse
currents is visible. As Y/R increases, the dimensions of the circulation
zone increase, approaching the dimensions of the zone in the case of flow of

a uniform jet around a sphere.

The velocity profile behind the sphere is generalized for different

nozzles, if Y/R = const (Figure la, Curves 1 and 2).

A change of the initial velocity of the incident flow within limits of
25 to 75 m/sec at constant Y/R does not change the picture of flow around the

sphere.
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Figure 1.

We examined -the kinematics of motion and found that the flow picture
depends considerably on one parameter. It is natural to assume that.the
dynamics of motion also depend on this paramefer.f;Experimehts with a sus-
pended sphere make it possible to determiné easily the,resiétive‘force of
the sphere, which is equal to its weight. Using the method of aerodynamic
suspension of the sphere without weights and assuming the rate of flow to be
equal to the avérage velocity in the cross section where the sphere isisus;
pended, we obtain the ‘coefficient of resistance of the sphere:

g ,= S]ng ,/ n(l‘lpv‘_’ .

- Here m is the mass of the spheres, d is its diameter, v is the average
velocity, p is the gas density, g is the accéleration due to gravity, depend-

ing on the dimensionless parameter Y/R.

At Y/R < 1 the coefficient of resistance is low. .With an,increasé of 177
this parametér, z increases monotonically and tends toward the value of ¢
in the case of flow around a sphere by a uniform jet (Figure 1b). The sphere
then becomes unstable in the jet and is ejected from it. It was not possible
to determine exactly the value of Y/R at which sﬁch a phenomenon is observed.
The approximate value of the ratio is 2:5 to 3.0.

A change in the Reynolds number NRe within the limits 6.7{104 to 2.0'105

has a weak influence on the coefficient of resistance, which remains practi-

cally constant in the given range of Reynolds numbers NRe'if Y/R = const.



Now let the axis of a thin jet be dispiaced relative to the center of
the sphere. Then the picture of the flow of an ideal 1liquid in the wicinity
of the point of convergence of the jets must be symmetrical with the picture
of the flow in the zone of divergence of the jet. The jet is deflected by
the sphere at a certain angle, and a stabilizing force is developed, directed
toward the axis of the jet and returning the sphere to a state of stable
equilibrium. We have determined experimentally the angles k of deviation of
the axis of the jet from the vertical behind the sphere in the case of non- .
centralized flow around the sphere (Figure 1lc) as well as the force F drawing

the‘sphere inward (Figure 1d).

If the axis of the jet passes through thé center of the circle about
which the flow passes, then the point of convergence is located one diameter
from the point of divergence of the jet. It is natural to assume that, as in
the case of central flow about a circle, we can consider in the first approxi-
mation that the critical points are located on the same diameter if the axis

of the jet'is displaced relative to the center of the sphere [1]. The hypo-

thesis of {1] is supported by the experiments (Figure 2).
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The experimental facts that have
been mentioned in conjunction with
the hypothesis [1] allow us to con-

v struct a model of flow around a

sphere, allowing an approximate

calculation. Application of the

2 i rin 4

‘theorem of impulses provides a possi-

Figure 2. bility of determining the force that
returns the sphere to a stafe of Stab1¢ equilibrium. It is necessary to know
_the angle of deviation of the axis of the jet from the vertical behind the
5phere in the case of non-central flow, as well as the radius of the divergent

jet.~

" The hypothesis in [1] makes it possible to determine the angle of

deviation of the axis of the jet from the vertical.



Let us consider the case of the flow of a thin ‘jet around a circle. To
determine the angle of deviation, it is necessary to estimate the distance
of the point of divergence from the axis of the jet. With this goal in mind,
let us consider the impact of the jet on a plate [5]. With a small width of
the jet relative to the diameter of the sphere in the vicinity of the diverg-
ing point, it is possible to consider the adjacent arc of the circumference
as a straight line tangent to the surface of the sphere at the point of its

intersection with the axis of the jet.

In such a view, the distance of the point of divergence from the axis

can be represented in the form

1=23pd, B =Y m—a (1)

where do is the diameter of the jet and o is the slope angle of the axis of

the jet relative to the surface. The expression is valid for small angles B.

In addition, from the reversibility of motion it follows that the flow in /78
the vicinity of the point of convergence of the jets behind the body must be
symmetric with the flow in the zone of divergence of the jet, since the flow

will be symmetric relative to some straight line which passes through the

center of the circle and is perpendicular to a diameter drawn through the

critical points.

Let us take the hypothesis of [1] as a basis and use (1); we can then
calculate the angle of deviation of the axis of the jet from the vertical:
¢ =2 [arc sin (k] R) -arc tan (] R)] (2)

~Here h is the displacement of the axis of the jet relative to the
center of the circle, R is the radius of the circle around which the flow is
passing, 7 is the distance from the axis of the jet to the point of divergence
along the arc of the surface around which the flow occurs, and « is the angle

of deviation of the axis of the jet from the vertical.

For a. correct determination of the force acting on the sphere, the geo-
metric picture is not completely acceptable, since the convergent jet is
wider than the initial one owing to the effects of viscosity. For quantitative

estimates it is necessary to take the narrowing of the jet into account. Let

5



us éxpress the radius. of the convergent jet through the initial data:

2gs Vg and R (the initial radius of the jet, the velocity of the incident
- flow, the coefficient of kinematic viscosity, and the radius of the sphere).
We run up against the boundary layer theory. In the flow of arthin jet around
a circle, the free surfaces of the divergent jets may be assumed to be the
circumferences of a radius close to the radius of the surface around which
the flow takes place. In this case, the velocity at the outer limit of the
boundéry layer‘will be an unknown quantity; therefore, we must add to the
‘equations of the boundary layer an equation for constancy of divergence.

Thé system of equations in cbordinates é, n (s is the longitudinal coordinate
along the contour, n is the transverse coordinate, calculated along the

normal to the profile) assumes the form

v S8 i)
8 - s . 8
Vs ds T s on ”"’anﬂ,( :
v v o (3)
s L s
. 0s + on 0
5
G =2nRsin - \v,dn (4
0
Using the identity
v " (v v
5 ___ n's’ __n
Un an ~ oOn Vs gn

the first equation (3) is rewritten as follows:

v

@«

dv 2 d(v,0) o &%
8s an 7 on

(5)

We now introduce the designation n/§ = n, where & is the thickness of

o

e e ——

the small jet flowing around the-sphere. Integrating equation .(5),

s
vS

d
E;S?szdn= v 6)

(-]
<D

- We express the velocity in the form
‘ v, =an + b 4 e
0% ] 0y =0 when 1 =0, b =

From the boundary conditions, we find the coefficient c:

¢ =—1, a, [Ovs / 81]_],“.__1 =0, v, =a(n— 1/3 %)



Considering that at point s, the velocity is equal to the initial

0
v(so) = vy 8, ~ rgs we write a(so) = 3/2 Yo (Figure 3).

The problem becomes one of
 finding a and 6; the latter can be
determined by two equations, obtain-
ed from (6) and (4) as substituted

for the expressions for'vs:

Figure 3.
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Omitting &, we will have
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After several transformations, we obtdin the differential equation
Idy o s “a A
3%————my1uﬁx' (yfmmgx,nzznﬁv

It has the solution

17y =m (zcos® 2 — cos z) + C

Satisfying the original cbndition a(xo) = 3/2 Vgr Tg = sO/R, we find

a as follows:

o= sinz -
- m(fscos*x — cos z) - %5 ((so / 2o R) -1 m2)
Consequently, sinz
. S 1 -
U= (s cosvm —cos 1) + o (oo / oB) )
Considering that x, =T - X, for small Ly where z, ~ rl/R %-SZ/R, r
belno the final radius of the jet, we find a, in the form

1 -
— ) 22 A
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The deviation for the initial cross section of the jet is expressed as

G = ﬂroz Vs for the final cross section G = ﬂRZxZZ 2/3 a -

the condition of censtancy of deviation, we equate these two expressions to

Proceeding from

one another and find the value of the final radius of the jet through the

initial parameters

B.45vRI\ "
r0200 )

rl = (7'03 '-i—‘

€))
Using the theorem of the preservation of momentum and using expressions
(2) and (9), we calculate the reaction of the jet to non-centralized flow
around a sphere: o
~ Spvvn'ds =F
The force that returns the sphere to a state of equilibrium is directed
along the z-axis and is expressed as follows:
PFy = mpro®vy? (ry ] ry)? sin %
The force of resistance of the sphere in the jet is
Fy = ”Pro}') S “”—‘» ‘(ro-/ r1) 2]
The coefficient of resistance calculated by formula
B ;—:SFU/ p 7’1):;7“1'2
for a thin jet coincides with the experimental data. The calculated data for
the angle of deviation of the axis of the jet from the vertical and the
stabilizing fofge at variousfangles of deviation is completely and reliably

“in agreement with the experimental findings (Figure lc and 1d).

The author expresses his gratitude to M. A. Gol'dshtik for assistance
rendered in ccnducting the work.
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